PHYSICS 211

Final Spring 2012-2013
 TIME: 90 minutes

NAME \qquad
ID Number \qquad

Useful information
$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}$
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}$
$q=1.6 \times 10^{-19} \mathrm{C}$
$m_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}$
$m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$
$k_{\mathrm{e}}=8.9875 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$

Grading

I	
II	
III	
IV	
V	
VI	
Total	

\qquadCheck if solution is continued on the back.

I- (22) Ampere's law

1- (10) The magnetic field of a solenoid with length l, radius a and number of turns N is uniform when a current I flows in it. Demonstrate that $B=\mu_{0} n I$.

2- (4) Use the definition of inductance to show that $L=\mu_{0} V n^{2}$; what it V here?

3- (3) What is the energy per unit volume stored as a function of B ?
\qquad

4- (5) The solenoid is turned now to make a torus with radius R, re-determine the magnetic field strength inside the torus.

II- (24) Faraday's law

1- (6) Show that, for a time varying current, that the back emf is: $|\mathcal{E}|=L d i / d t$
(3) In an RL-circuit shown to the right, discuss the different forms of energy.

2- (11) A bar, with length l and mass m is sliding in one direction subject to a constant force $\mathbf{F}_{\text {app }}$, Determine the current amplitude and direction flowing as a function of time in two different ways.

3- (4) Based on the above calculation, comment on what does Faraday's law reflects.
\qquad

III- (16) Ampere and Faraday's laws

Consider a current I flowing in a long straight wire with a radius a and length l.

1. (10) Determine the magnetic field magnitude and direction for $r<a$ and for $r>a$.
2. (6) Let the current increase as a function of time according to $I=\alpha t+I_{0}$, determine the amplitude and the direction of the induced potential for $r<a$ [Hint: First determine the magnetic flux area].
\qquad

IV- (20) AC Circuits

We consider a circuit composed of an AC power source, supplying a current $I=I_{\max } \sin (\omega t)$, a resistor R and an inductor L.
(a)(4) Consider that the resistance alone is connected to the power supply, determine the expression of the potential difference across it.
(b)(4) Consider that the inductor alone is connected to the power supply, determine the expression of the potential difference across it.
(c)(6) When both R and L are put in series, determine the impedance of the circuit.
\qquadCheck if solution is continued on the back.
(d)(2) Determine the expression of the circuit phase.
(e)(4) Discuss the behavior of this circuit at low frequencies $(\omega \rightarrow 0)$ and for $(\omega \rightarrow \infty)$ and plot the current $I_{\max }$ vs. $\omega \mathrm{t}$ and comment on the results.

V- (10) AC Circuits

We insert a capacitor in parallel to the inductor as shown in the figure below and the AC power source produces now a potential difference $\varepsilon=\varepsilon_{0} \cos (\omega t)$.

(f)(5) What are the maximum values of $I_{\mathrm{L}}, I_{\mathrm{c}}$ and I_{R} in the case where $\omega \rightarrow 0$
(g)(5) What are the maximum values of $I_{\mathrm{L}}, I_{\mathrm{c}}$ and I_{R} in the case where $\omega \rightarrow \infty$

VI-(8) Write down the full four equations of Maxwell and comment with one sentence on each about what does it reflect.
\qquad

SCRATCH PAPER

Nothing on this page will be graded

